
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 23 – Sorting

www.umbc.edu

Last Class We Covered

• Searching

– Linear search

– Binary search

• Recursion

– Recursion

• Recursion

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about some sorting algorithms

– Selection Sort

– Bubble Sort

– Quicksort

• To start examining which of these algorithms
is best for different sorting situations

– “Run” time

4

www.umbc.edu5

“Run” Time

www.umbc.edu

“Run” Time

• An algorithm’s run time is the amount of time
it takes for that algorithm to run

• Run time is shown as an expression, which
updates based on how large the problem is

• Run time shows how an algorithm scales, or
changes with the size of the problem

6

www.umbc.edu

Example: Fibonacci Recursion

• Ideally, we want an algorithm that runs in a
reasonable amount of time, no matter how
large the problem

• Remember the recursive Fibonacci program?

– It runs within one second for smaller numbers

– But the larger the number we ask for, the longer
and longer it takes

7

www.umbc.edu

Fibonacci Recursion
python fibEx.py (with num < 30):

< 1 second

python fibEx.py (with num = 30):

2 seconds

python fibEx.py (with num = 35):

8 seconds

python fibEx.py (with num = 40):

76 seconds

8

www.umbc.edu

Fibonacci Recursion
python fibEx.py (with num = 50):

Guess!

9,493 seconds

2 hours, 38 minutes, 13 seconds!!!

9

www.umbc.edu

Run Time for Linear Search

• Say we have a list that does not contain what
we’re looking for.

• How many things in the list does linear search
have to look at for it to figure out the item’s
not there for a list of 8 things?

• 16 things?

• 32 things?

10

www.umbc.edu

Run Time for Binary Search

• Say we have a list that does not contain what
we’re looking for.

• What about for binary search?

– How many things does it have to look at to figure
out the item’s not there for a list of 8 things?

– 16 things?

– 32 things?

• Notice anything different?

11

www.umbc.edu

Different Run Times

• These algorithms scale differently!

– Linear search does work equal to the number of
items in the list

– Binary search does work equal to the log2 of the
numbers in the list!

• A log2(x) is basically asking “2 to what power
equals x?”

– This is the same as saying, “how many times must we
divide x in half before we hit 1?”

12

www.umbc.edu13

Sorting

www.umbc.edu

Sorting Algorithms

• Sorting algorithms put the elements of
a list in a specific order

• A sorted list is necessary to be able
to use certain other algorithms

• Like binary search!

– If sorted once, we can search many, many times

14

www.umbc.edu

Sorting Algorithms

• There are many different ways to sort a list

• What method would you use?

• Now imagine you can only look at
at most two elements at a time

– What method would you use now?

• Computer science has a number of
commonly used sorting algorithms

15

www.umbc.edu16

Selection Sort

www.umbc.edu

Selection Sort Algorithm

• Here is a simple way of sorting a list:

1. Find the smallest number in a list

2. Move that to the end of a new list

3. Repeat until the original list is empty

17

www.umbc.edu

Selection Sort Run Time

• What is the run time of finding the lowest
number in a list?

• For a list of size N, what is the worst case
number of elements you’d have to look
through to find the min?

• N

18

www.umbc.edu

Selection Sort Run Time

• For a list of size N, how many times would we
have to find the min to sort the list?

• N

• What is the run time of this sorting algorithm?

• N2

19

www.umbc.edu

Selection Sort Video

20 Video from https://www.youtube.com/watch?v=Ns4TPTC8whw

www.umbc.edu21

Bubble Sort

www.umbc.edu

Bubble Sort Algorithm

• Let’s take a look at another sorting method!

1. We look at the first pair of items in the list, and if the
first one is bigger than the second one, we swap them

2. Then we look at the second and third one and put
them in order, and so on

3. Once we hit the end of the list, we start over at the
beginning

4. Repeat until the list is sorted!

22

www.umbc.edu

Bubble Sort Example
[4, 8, 1, 10, 13, 14, 6]

First pass:
4 and 8 are in order
8 and 1 should be swapped:
[4, 1, 8, 10, 13, 14, 6]

8 and 10 are in order
10 and 13 are in order
13 and 14 are in order
6 and 14 should be swapped:
[4, 1, 8, 10, 13, 6, 14]

23

www.umbc.edu

Bubble Sort Example (Cont)
[4, 1, 8, 10, 13, 6, 14]

Second pass:
4 and 1 should be swapped:
[1, 4, 8, 10, 13, 6, 14]

4 and 8 are in order
8 and 10 are in order
10 and 13 are in order
13 and 6 should be swapped:
[1, 4, 8, 10, 6, 13, 14]

13 and 14 are in order

24

www.umbc.edu

Bubble Sort Example (Cont)
[1, 4, 8, 10, 6, 13, 14]

Third pass:
10 and 6 should be swapped:
[1, 4, 8, 6, 10, 13, 14]

Fourth pass:
8 and 6 should be swapped:
[1, 4, 6, 8, 10, 13, 14]

25

www.umbc.edu

Bubble Sort Run Time

• For a list of size N, how much work do we do for
a single pass?
– N

• How many passes will we have to do?

– N

• What is the run time of Bubble Sort?
– N2

26

www.umbc.edu

Bubble Sort Video

27 Video from https://www.youtube.com/watch?v=lyZQPjUT5B4

www.umbc.edu28

Quicksort

www.umbc.edu

Quicksort Algorithm

• Here’s another method:

1. Start with the number on the far right

2. Put everything less than that number on
the left of it and everything greater than it
on the right of it

3. Quicksort the left side and the right side

• Does this method remind you of anything?

29

www.umbc.edu

Quicksort Run Time

• For a list of size N, how many steps does it take
to move everything less than the last number to
the left and everything greater than the last
number to the right?

• N

30

www.umbc.edu

Quicksort Run Time

• How many times will the algorithm divide the
list in half?

• lg(N)

• What is the run time of Quicksort?

• N * lg(N)

31

www.umbc.edu

Quicksort Video

32 Video from https://www.youtube.com/watch?v=ywWBy6J5gz8

www.umbc.edu

Announcements

• Final is when?

• “Hour of code” volunteer opportunity
– http://www.signupgenius.com/go/10c0f45aaab2aabfc1-hour

• Project 2 out now

– Due on Tuesday, December 13th

• Survey #3 also out – follow link in announcement

33

Thursday, December 15th (3:30 – 5:30)

http://www.signupgenius.com/go/10c0f45aaab2aabfc1-hour

